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The Plurality Consensus Problem

We have a set of nodes each having one color out of
{1, . . . , k}.
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We want to reach consensus on the plurality color.
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• Computer science: distributed databases and sensor
networks (Bénézit et al. ’09).

• Social networks: opinion dynamics (Mossel et al. ’14).

• Biology: cell cycle (Cardelli et al. ’12).

• Chemestry: chemical reaction networks/population
protocols (Angluin et al. ’07).
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Pre-CS History

Voter Model (’70). Each
node with a Poisson clock.
When rings, takes the
opinion of a random
neighbor.

Probabilistic Polling
(Peleg ’99). Time divided
in discrete rounds. All
nodes simultaneously take
the opinion of a random
neighbor.

Discrete time
(parallel/synchronous)
process. Initiated the
study of Plurality
Consensus in Computer
Science.

Continuos time (sequen-
tial/asynchronous)
process. Well studied in
statistical physics
(constant number of
particle types).
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Our Setting

• Initial bias: the plurality is at least (1 + ε) times any
other color.

• Topology: complete graph (and regular expanders).

• Communication model: GOSSIP model
[Censor-Hillel et al., STOC ’12]. Each node in one
round can exchange messages with only one neighbor.

• Local memory and message size: O(logn).
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Relationships to Other Communication Models

GOSSIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. . .

LOCAL model [Peleg, SIAM ’00]: each node in one round
can exchange messages with all its neighbors.
. . . on the complete graph, plurality consensus can be
achieved in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSIP model.
But. . .But. . . using the preceding theorem, message size grows
dramatically!
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The 3-Majority Dynamics

Each node observes the color of three other nodes
chosen u.a.r....



The 3-Majority Dynamics

...and changes its color according to the majority of
these three (breaking ties u.a.r.).
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Our Results

First analysis for k = ω(1) of the Undecided-State Dynamics:
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If k = O
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Our Results

First analysis for k = ω(1) of the Undecided-State Dynamics:

Upper Bound
If k = O

(
(n/ logn)1/3) and c1 ≥ (1 + ε) · c2 with ε > 0,

then w.h.p. the Undecided-State Dynamics reaches
plurality consensus in O

(
md(c(0)) · logn

)
rounds.

Lower Bound
If k = O

(
(n/ logn)1/6) then w.h.p. the Undecided-State

Dynamics converges after at least Ω(md(c(0))) rounds.

(Angluin et al., Perron et al.,
Babaee et al., Jung et al.)
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Some nodes can be “undecided”.

?



The Undecided-State Dynamics

?

At the beginning of each round, each node observes a
neighbor picked uniformly at random.



The Undecided-State Dynamics

?

If the observed node shares the same color. . .
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The Undecided-State Dynamics
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but, if the observed node has a different color. . .



The Undecided-State Dynamics

?

. . . then the node becomes undecided.

?



The Undecided-State Dynamics

?

Once undecided. . .

?



The Undecided-State Dynamics

?

. . . the node copies the first color it sees.
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Expected Behaviour of the Process
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First Round

Round 1:
Each node observes
another random one.
The larger the
number of colors and
the more uniform the
initial distribution,
the higher the
expected number of
undecided nodes.
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Phase 1

If the initial
distribution is quite
uniform there are
Ω(n) undecided nodes.
Undecided nodes take
the first color they
pull, causing colors to
spread very fast.



Phase 1

Lemma
Within T = O

(
log R(c)2

md(c)

)
rounds the system reaches a

configuration such that w.h.p.

c
(T )
1 = Θ

(
n

md(c)

)
q(T ) = n

2

(
1±Θ

(
1

md(c)

))
and, for every i, c(0)

1 /c
(0)
i is approximately preserved.
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=⇒ Lower bound of Ω (md(c)).
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Phase 3

Average Growth:
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=⇒ After O (md(c) logn) rounds, R(c(t)) = 1 + o(1).
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Phase 3

R(c(t)) = 1 + o(1) =⇒ c
(t)
1 = n−q(t)

R(c(t)) ≈ n− q
(t)

=⇒ E
[

c
(t+1)
1 +2q(t+1)

n

∣∣∣∣c(t)
]
≥ 1 +

(
q(t)

n

)2

=⇒ Plurality Consensus is reached within O (logn) rounds.



Extension to d-Regular Expanders

Theorem
Given a d-regular expander graph, k = O

(
(n/ logn)1/3)

and c1 ≥ (1 + ε) · c2 with ε > 0, using polylogarithmic
memory and message size the plurality consensus
problem can be solved in w.h.p. O(md(c)polylog(n))
rounds.



Extension to d-Regular Expanders

Theorem
Given a d-regular expander graph, k = O

(
(n/ logn)1/3)

and c1 ≥ (1 + ε) · c2 with ε > 0, using polylogarithmic
memory and message size the plurality consensus
problem can be solved in w.h.p. O(md(c)polylog(n))
rounds.

Idea
Simulate Undecided-State Dynamics on complete graph
by sampling via n parallel random walks.
(Rapidly mixing property)
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• Elsässer, Kaaser (IPDPS ’15).



Random Walks in the GOSSIP Model

Stochastic dependence: positions of tokens.

Case n/ logn Tokens
• Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP ’10),
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Random Walks in the GOSSIP Model

Coupling: every node always sends a token
(when empty, creates a new one).

Congestion: in t rounds, at most
√
t w.h.p.

Stochastic dependence: positions of tokens.

Case n/ logn Tokens
• Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP ’10),
• Elsässer, Kaaser (IPDPS ’15).

Our Case: n Tokens

(Brutal)
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Self-Stabilizing Repeated Balls-into-Bins. (Submitted).

Theorem
Consider the ”GOSSIP” random walks process on a
complete graph with n nodes, and n tokens initially
distributed in an arbitrary way.
After O(n) rounds, w.h.p. the congestion is at most
O(logn). Moreover, w.h.p. it keeps below O(logn) for
t = O(nc) rounds (for any c > 0).



Random Walks in the GOSSIP Model

Becchetti, Clementi, Natale, Pasquale, Posta.
Self-Stabilizing Repeated Balls-into-Bins. (Submitted).

Theorem
Consider the ”GOSSIP” random walks process on a
complete graph with n nodes, and n tokens initially
distributed in an arbitrary way.
After O(n) rounds, w.h.p. the congestion is at most
O(logn). Moreover, w.h.p. it keeps below O(logn) for
t = O(nc) rounds (for any c > 0).

Open Problem: bound the congestion on graphs other
than the complete one.
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Summary

• md(c): global measure of bias, key of the
Undecided-State Dynamic.
=⇒ Plurality consensus problem with many colors.

• Extension to regular expanders: random walks in the
GOSSIP model.

Open Problems
• md(c) ?= general time lower bound on the plurality

consensus problem for any dynamics which uses only
log k + Θ(1) bits of local memory?

• Undecided-State Dynamics + sampling via random
walks = efficient protocol for regular expander graphs.
Similar protocols for other classes of graphs. . . ?



Vielen Dank!
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