Plurality Consensus in the Gossip Model

Emanuele Natale †

joint work with L. Becchetti[†], A. Clementi^{*}, F. Pasquale^{*} and R. Silvestri[†]

Efficient Algorithms Group, CS Department, Salzburg University, February 20th, 2015

The Plurality Consensus Problem

We have a set of nodes each having one color out of $\{1, \ldots, k\}.$

The Plurality Consensus Problem

There is a plurality of nodes having the same color.

The Plurality Consensus Problem

We want to reach consensus on the plurality color.

• **Computer science**: distributed databases and sensor networks (Bénézit et al. '09).

• **Computer science**: distributed databases and sensor networks (Bénézit et al. '09).

• Social networks: opinion dynamics (Mossel et al. '14).

• **Computer science**: distributed databases and sensor networks (Bénézit et al. '09).

• Social networks: opinion dynamics (Mossel et al. '14).

• **Biology**: cell cycle (Cardelli et al. '12).

• **Computer science**: distributed databases and sensor networks (Bénézit et al. '09).

• Social networks: opinion dynamics (Mossel et al. '14).

• **Biology**: cell cycle (Cardelli et al. '12).

• Chemestry: chemical reaction networks/population protocols (Angluin et al. '07).

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor.

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor. Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor.

Probabilistic Polling (**Peleg '99**). Time divided in discrete rounds. All nodes *simultaneously* take the opinion of a random neighbor. Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor.

Probabilistic Polling (**Peleg '99**). Time divided in discrete rounds. All nodes *simultaneously* take the opinion of a random neighbor. Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

Discrete time (parallel/synchronous)
process. Initiated the study of Plurality Consensus in Computer Science.

Asynchronous vs Synchronous

Asynchronous vs Synchronous

Synchronous Case

• Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.

• Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.

• **Topology**: complete graph (and regular expanders).

• Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.

• **Topology**: complete graph (and regular expanders).

• Communication model: *GOSSIP* model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.

• Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.

• **Topology**: complete graph (and regular expanders).

• Communication model: *GOSSIP* model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.

• Local memory and message size: $O(\log n)$.

GOSSIP model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors. ... on the complete graph, plurality consensus can be achieved in one round.

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors. ... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the \mathcal{LOCAL} model in T rounds, can be solved in O(T + polylogn) rounds in the \mathcal{GOSSIP} model.

But...

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors. ... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the \mathcal{LOCAL} model in T rounds, can be solved in O(T + polylogn) rounds in the \mathcal{GOSSIP} model.

But... using the preceding theorem, message size grows dramatically!

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$		$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$		$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$		$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe _{et al.} FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM '09	$\Theta(1)$		$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$		$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential

Characterizing the Initial Bias

$$c_i^{(t)} := |\{i \text{-colored nodes}\}| \qquad \text{color 1 is the plurality}$$

Characterizing the Initial Bias

Each node observes the color of three other nodes chosen u.a.r...

...and changes its color according to the majority of these three (breaking ties u.a.r.).

	Mem. &	# of	Time	Comm.
	mess. size	colors	efficiency	Model
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GOSSIP

	Mem. &	# of	Time	Comm.
	mess. size	colors	efficiency	Model
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GOSSIP

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GOSSIP
The Monochromatic Distance

The Monochromatic Distance

Our Results

First analysis for $k = \omega(1)$ of the Undecided-State Dynamics: (Angluin et al., Perron et al., Babaee et al., Jung et al.)

Upper Bound

If $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1+\epsilon) \cdot c_2$ with $\epsilon > 0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O(\operatorname{md}(\mathbf{c}^{(0)}) \cdot \log n)$ rounds.

Our Results

First analysis for $k = \omega(1)$ of the Undecided-State Dynamics: (Angluin et al., Perron et al., Babaee et al., Jung et al.)

Upper Bound

If $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1+\epsilon) \cdot c_2$ with $\epsilon > 0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O(\operatorname{md}(\mathbf{c}^{(0)}) \cdot \log n)$ rounds.

Lower Bound If $k = O((n/\log n)^{1/6})$ then w.h.p. the Undecided-State Dynamics converges after at least $\Omega(\mathrm{md}(\mathbf{c}^{(0)}))$ rounds.

Some nodes can be "undecided".

At the beginning of each round, each node observes a neighbor picked uniformly at random.

If the observed node shares the same color...

... nothing happens;

if the node observes an undecided one...

... nothing happens too;

but, if the observed node has a different color...

... then the node becomes undecided.

Once undecided...

... the node copies the first color it sees.

$$c_i^{(t)} := |\{i \text{-colored nodes}\}|, \quad \text{color 1 is the plurality,}$$

$$q^{(t)} := |\{ \text{undecided nodes} \}|, \quad \mathbf{c}^{(t)} := \left(c_1^{(t)}, \dots, c_k^{(t)}, q^{(t)} \right).$$

$$\mathbf{E}\left[c_{i}^{(t+1)} \mid \mathbf{c}^{(t)}\right] = c_{i}^{(t)} \cdot \underbrace{\frac{c_{i}^{(t)} + 2q^{(t)}}{n}}_{\text{Growth factor}}$$

Remarks W.h.p.

- Plurality does not change.

- Growth factor of plurality is > 1.

Remarks W.h.p.

- Plurality does not change.
- Growth factor of plurality is > 1.

Remarks W.h.p.

- Plurality does not change.
- Growth factor of plurality is > 1.

Remarks W.h.p.

- Plurality does not change.
- Growth factor of plurality is > 1.

Expected Behaviour of the Process

$$\begin{cases} \mathbf{E} \left[q^{(t+1)} \mid \mathbf{c}^{(t)} \right] = \frac{1}{n} \left[\left(q^{(t)} \right)^2 + \left(n - q^{(t)} \right)^2 - \sum_i \left(c_i^{(t)} \right)^2 \right] \\ \mathbf{E} \left[c_1^{(t+1)} \mid \mathbf{c}^{(t)} \right] = c_1^{(t)} \cdot \frac{c_1^{(t)} + 2q^{(t)}}{n} \\ \vdots \\ \mathbf{E} \left[c_k^{(t+1)} \mid \mathbf{c}^{(t)} \right] = c_k^{(t)} \cdot \frac{c_k^{(t)} + 2q^{(t)}}{n} \end{cases}$$

Key Idea

Tip: Look for
$$md(\mathbf{c}^{(t)})$$
 and $R(\mathbf{c}^{(t)}) := \sum_{i=1}^{k} \frac{c_i^{(t)}}{c_1^{(t)}}$.

Key Idea

Tip: Look for
$$md(\mathbf{c}^{(t)})$$
 and $R(\mathbf{c}^{(t)}) := \sum_{i=1}^{k} \frac{c_i^{(t)}}{c_1^{(t)}}$.

$$\mathbf{E}\left[\frac{c_{1}^{(t+1)}+2q^{(t+1)}}{n} \left| \mathbf{c}^{(t)} \right] = \\ = 1 + \frac{\left(n - 2q^{(t)} - c_{1}^{(t)}\right)^{2}}{n^{2}} + \frac{2\left(R(\mathbf{c}^{(t)}) - \mathrm{md}(\mathbf{c}^{(t)})\right) \cdot (c_{1})^{2}}{n^{2}}$$

First Round

Round 1:

Each node observes another random one. The larger the number of colors and the more uniform the initial distribution, the higher the expected number of undecided nodes.

First Round

The size of each color is reduced to $\frac{(c_i^{(0)})^2}{n}$. Colors with $c_i^{(0)} = O(\sqrt{n})$ nodes are likely to disappear.

If the initial distribution is quite uniform there are $\Omega(n)$ undecided nodes. Undecided nodes take the first color they pull, causing colors to spread very fast.

Lemma Within $T = O\left(\log \frac{R(\mathbf{c})^2}{\mathrm{md}(\mathbf{c})}\right)$ rounds the system reaches a configuration such that w.h.p.

$$c_1^{(T)} = \Theta\left(\frac{n}{\mathrm{md}(\mathbf{c})}\right)$$
$$q^{(T)} = \frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\mathrm{md}(\mathbf{c})}\right)\right)$$

and, for every i, $c_1^{(0)}/c_i^{(0)}$ is approximately preserved.

Average Growth:

$$\mathbf{E}\left[c_{1}^{(t+1)} \left| \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)} \left(1 + \Theta\left(\frac{1}{\mathrm{md}(\mathbf{c})}\right)\right)$$
$$\mathbf{E}\left[q^{(t+1)} \left| \mathbf{c}^{(t)}\right] \approx \frac{n}{2} \left(1 - \Theta\left(\frac{1}{\mathrm{md}(\mathbf{c})}\right)\right)$$

Average Growth:

$$\mathbf{E}\left[c_{1}^{(t+1)} \left| \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)} \left(1 + \Theta\left(\frac{1}{\mathrm{md}(\mathbf{c})}\right)\right)$$
$$\mathbf{E}\left[q^{(t+1)} \left| \mathbf{c}^{(t)}\right] \approx \frac{n}{2} \left(1 - \Theta\left(\frac{1}{\mathrm{md}(\mathbf{c})}\right)\right)$$

 \implies Lower bound of Ω (md(c)).

Phase 3

The plurality has a small advantage \implies after long time the equilibrium breaks down.

The plurality has a small advantage \implies after long time the equilibrium breaks down.

The plurality has a small advantage \implies after long time the equilibrium breaks down.

Average Growth:

$$\mathbf{E}\left[c_{1}^{(t+\operatorname{md}(\mathbf{c}))} \mid \mathbf{c}^{(t)}\right] \approx c_{1}^{(t)} \left(1 + \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)^{\operatorname{md}(\mathbf{c})}$$
$$\mathbf{E}\left[q^{(t+\operatorname{md}(\mathbf{c}))} \mid \mathbf{c}^{(t)}\right] \approx \frac{n}{2} \left(1 - \Theta\left(\frac{1}{\operatorname{md}(\mathbf{c})}\right)\right)^{\operatorname{md}(\mathbf{c})}$$

 \implies After $O(\operatorname{md}(\mathbf{c})\log n)$ rounds, $R(\mathbf{c}^{(t)}) = 1 + o(1)$.

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$\implies \mathbf{E}\left[\frac{c_1^{(t+1)} + 2q^{(t+1)}}{n} \left| \mathbf{c}^{(t)} \right| \ge 1 + \left(\frac{q^{(t)}}{n}\right)^2\right]$$

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$\implies \mathbf{E}\left[\frac{c_1^{(t+1)} + 2q^{(t+1)}}{n} \left| \mathbf{c}^{(t)} \right| \ge 1 + \left(\frac{q^{(t)}}{n}\right)^2\right]$$

 \implies Plurality Consensus is reached within $O(\log n)$ rounds.

Theorem

Given a *d*-regular expander graph, $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\text{md}(\mathbf{c})\text{polylog}(n))$ rounds.

Theorem

Given a *d*-regular expander graph, $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(\text{md}(\mathbf{c})\text{polylog}(n))$ rounds.

Idea

Simulate Undecided-State Dynamics on complete graph by sampling via n parallel random walks. (Rapidly mixing property)

Case $n/\log n$ Tokens

- Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP '10),
- Elsässer, Kaaser (IPDPS '15).

Case $n/\log n$ Tokens

- Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP '10),
- Elsässer, Kaaser (IPDPS '15).

Our Case: *n* **Tokens Stochastic dependence:** positions of tokens.

Case $n/\log n$ Tokens

- Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP '10),
- Elsässer, Kaaser (IPDPS '15).

Our Case: n Tokens

Stochastic dependence: positions of tokens.

Coupling: every node always sends a token (when empty, creates a new one).

Case $n/\log n$ Tokens

- Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP '10),
- Elsässer, Kaaser (IPDPS '15).

Our Case: *n* **Tokens**

Stochastic dependence: positions of tokens.

(Bruta) Coupling: every node always sends a token (when empty, creates a new one).

Case $n/\log n$ Tokens

- Berenbrink, Czyzowicz, Elsässer, Gasieniec (ICALP '10),
- Elsässer, Kaaser (IPDPS '15).

Our Case: n Tokens

Stochastic dependence: positions of tokens.

(Brutan) Coupling: every node always sends a token (when empty, creates a new one).

Congestion: in t rounds, at most \sqrt{t} w.h.p.

In t rounds, congestion at most \sqrt{t} w.h.p.

In t rounds, congestion at most \sqrt{t} w.h.p.

Becchetti, Clementi, Natale, Pasquale, Posta. Self-Stabilizing Repeated Balls-into-Bins. (Submitted).

Becchetti, Clementi, Natale, Pasquale, Posta. Self-Stabilizing Repeated Balls-into-Bins. (Submitted).

Theorem

Consider the " \mathcal{GOSSIP} " random walks process on a complete graph with n nodes, and n tokens initially distributed in an arbitrary way. After O(n) rounds, w.h.p. the congestion is at most $O(\log n)$. Moreover, w.h.p. it keeps below $O(\log n)$ for

 $t = O(n^c)$ rounds (for any c > 0).

Becchetti, Clementi, Natale, Pasquale, Posta. Self-Stabilizing Repeated Balls-into-Bins. (Submitted).

Theorem

Consider the " \mathcal{GOSSIP} " random walks process on a complete graph with n nodes, and n tokens initially distributed in an arbitrary way. After O(n) rounds, w.h.p. the congestion is at most $O(\log n)$. Moreover, w.h.p. it keeps below $O(\log n)$ for $t = O(n^c)$ rounds (for any c > 0).

Open Problem: bound the congestion on graphs other than the complete one.

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.

• md(**c**): global measure of bias, key of the Undecided-State Dynamic.

 \implies Plurality consensus problem with **many** colors.

• Extension to regular expanders: random walks in the \mathcal{GOSSIP} model.

• md(**c**): global measure of bias, key of the Undecided-State Dynamic.

 \implies Plurality consensus problem with **many** colors.

• Extension to regular expanders: random walks in the \mathcal{GOSSIP} model.

Open Problems

• $\operatorname{md}(\mathbf{c}) \stackrel{?}{=}$ general time lower bound on the plurality consensus problem for *any* dynamics which uses only $\log k + \Theta(1)$ bits of local memory?

• md(**c**): global measure of bias, key of the Undecided-State Dynamic.

 \implies Plurality consensus problem with **many** colors.

• Extension to regular expanders: random walks in the \mathcal{GOSSIP} model.

Open Problems

- $\operatorname{md}(\mathbf{c}) \stackrel{?}{=}$ general time lower bound on the plurality consensus problem for *any* dynamics which uses only $\log k + \Theta(1)$ bits of local memory?
- Undecided-State Dynamics + sampling via random walks = efficient protocol for regular expander graphs. Similar protocols for other classes of graphs...?
Vielen Dank!