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The (Plurality) Consensus Problem

We have a set of nodes each having one color out of
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The (Plurality) Consensus Problem

(There is a plurality of nodes having the same color.)
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The (Plurality) Consensus Problem

We want to reach consensus (on the plurality color).



Pre-CS History

Voter Model (°70).
Each node with a Poisson
clock. When rings, takes
the opinion of a random
neighbor.
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Our Setting

Initial bias: the plurality is at least (1 + €) times any
other color.

Topology: complete graph (and regular expanders).

Communication model: GOSSZP model
|Censor-Hillel et al., STOC ’"12]. Each node
in one round can exchange messages with
only one neighbor.

Local memory and message size: O(logn).



Relationships to Other Communication Models

GOSSZIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. ..



Relationships to Other Communication Models

GOSSZIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, STAM ’00]: each node in one
round can exchange messages with all its neighbors.



Relationships to Other Communication Models

GOSSZIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, STAM ’00]: each node in one

round can exchange messages with all its neighbors.
...on the complete graph, plurality consensus can be

achieved in one round.



Relationships to Other Communication Models

GOSSZIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, STAM ’00]: each node in one

round can exchange messages with all its neighbors.
...on the complete graph, plurality consensus can be

achieved in one round.

Censor-Hillel et al. (STOC ’12):
Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the

GOSSIP model.
But. ..




Relationships to Other Communication Models

GOSSZIP model with neighbors chosen randomly:
Telephone Call, Push&Pull, Uniform Gossip. ..

LOCAL model [Peleg, STAM ’00]: each node in one

round can exchange messages with all its neighbors.
...on the complete graph, plurality consensus can be

achieved in one round.

Censor-Hillel et al. (STOC ’12):

Every task that can be solved in the LOCAL model in T
rounds, can be solved in O(T + polylogn) rounds in the
GOSSTP model.

But. .. using the preceding theorem, message size grows
dramatically!




(Some) Related Works
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Characterizing the Initial Bias

cgﬂ := |{i-colored nodes}| color 1 is the plurality
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The 3-Majority Dynamics
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Each node observes the color of three other nodes
chosen u.a.r....



The 3-Majority Dynamics

...and changes its color according to the majority of
these three (breaking ties u.a.r.).



Upper Bound for the 3-Majority

cgﬂ := |{i-colored nodes}| color 1 is the plurality
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Upper Bound for the 3-Majority

cgﬂ := |{i-colored nodes}| color 1 is the plurality
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Upper Bound for the 3-Majority

Cz-(t) := number of nodes supporting opinion ¢ at round t.

ui(c) = E[C{V | Ct) = (]

Lemma 1. For any opinion 7 it holds

Mj(c)zcy( +__ﬁ Zch)

Lemma 2. Let 1 be the plurality opinion, then

pr = g > s(e) (10 (1=))



Upper Bound for the 3-Majority

Lemma 1. For any opinion 7 it holds

Cj 1 2

Mj(C)ZCj(lJrg—ﬁ Ch)'
he(k]

Proof.
P (A node chooses color j)
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Upper Bound for the 3-Majority

Lemma 2. Let 1 be the plurality opinion, then

a0 (142 (1)

Proof.

p1 — pj = p — g2 = (e —c2) + -

hek
> s(c) (1 CiL+cC2 €] +2n02>
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Convergence of 3-Majority |[SPAA ’14]

Theorem. From any configuration with k < /n
colors, such that

s > 22+/2knlogn,

the 3-majority protocol converges to the majority
opinion in O(2klogn) rounds w.h.p., even in the
presence of a O(4/n)-bounded dynamic adversary.

Proof. Plurality is preserved and the gap between
plurality and others increses.
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Convergence of 3-Majority |[SPAA ’14]

Theorem. From any configuration with k < /n
colors, such that

s > 22+/2knlogn,

the 3-majority protocol converges to the majority
opinion in O(2klogn) rounds w.h.p., even in the
presence of a O(4/n)-bounded dynamic adversary.

Mem. & # of Time Comm.
mess. size | colors | efficiency | Model
SPAA "14 | O(loglk) n®M  |O(klogn)| GOSSTP
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Part 1-b: Undecided-State

1. Majority Consensus

(a) 3-Majority (take I)

(b) Undecided-State
2. Congestion of GOSSTP random walks
3. Stabilizing Consensus

(a) 3-Majority (take II)



The Undecided-State Dynamics
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The Undecided-State Dynamics
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At the beginning of each round, each node observes a
neighbor picked uniformly at random.




The Undecided-State Dynamics
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The Undecided-State Dynamics
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The Undecided-State Dynamics
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The Undecided-State Dynamics
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but, if the observed node has a different color. ..




The Undecided-State Dynamics

...then the node becomes undecided.



The Undecided-State Dynamics
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The Undecided-State Dynamics
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...the node copies the first color it sees.
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The Monochromatic Distance
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Convergence of the Undecided-State [SODA 15

First analysis for k = w(1) of the
Undecided-State Dynamics (Angluin et al., Perron
et al., Babaee et al., Jung et al.).

Theorem.

If k=0 ((n/logn)*/3) and ¢; > (1+¢€) - c2 with
e > 0, then w.h.p. the Undecided-State Dynamics
reaches plurality consensus in

O (md(c?) - logn) N Q(md(c'?)) rounds.



Extension to d-Regular Expanders

Theorem

Given a d-regular expander graph,

k=0 ((n/logn)t/3) and ¢; > (1 +¢) - co with € > 0,
using polylogarithmic memory and message size the
plurality consensus problem can be solved in w.h.p.
O(md(c)polylog(n)) rounds.



Extension to d-Regular |

Theorem
Given a d-regular expander graph,

xpanders

k=0 ((n/logn)'/3) and ¢; > (1 +¢€) - ca with € > 0,
using polylogarithmic memory and message size the
plurality consensus problem can be solved in w.h.p.

O(md(c)polylog(n)) rounds.

Idea
Simulate Undecided-State Dynami

cs on complete

graph by sampling via n parallel random walks.

(Rapidly mixing property)
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Part 2: Congestion of GOSSZP random walks

1. Majority Consensus
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(a) 3-Majority (take II)



Congestion in GOSSZP Random Walks

Goal: keep max load below O(logn).

A
M- max # of tokens on each node
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Congestion in GOSSZP Random Walks

Goal: keep max load below O(logn).
Simple random walks: max load O(logn) w.h.p.
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GOSSIP model [Censor-Hillel et al. ’12]: only one
token moves from each node (limited communication).
Max load of GOSSZP random walks: O(logn)?
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Some Related Work

Information exchange in phone-call
model |Berenbrink et al. 2010,

Elsasser et al. 2015]:
analysis for polylog(n) rounds.

Mixing time on regular expanders
Becchetti et al. 2015]:
maximum load v/t (¢ rounds).

Closed Jackson networks in queueing
theory: asynchronous version of

GOSSTIP r.w.s

(admits closed form solution).
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Seemingly Off Topic: Balls-into-Bins

Each ball is thrown

in one bin chosen .:.0:
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Seemingly Off Topic: Balls-into-Bins

Maximum load: maximum number of
balls that end up in any bin.
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Repeated Balls-into-Bins & GOSSZP R. W.s

At each round, pick one ball from each non-empty bin...
...and throw them again u.a.r.

Max load: max. number of
balls in any bin.




Repeated Balls-into-Bins & GOSSZP R. W.s

At each round, pick one ball from each non-empty bin...
...and throw them again u.a.r.

Repeated n balls in n bins

n GOSSIP r.w.s on n-node Com]g()lete gra),ph
with loops
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Analyzing Repeated Balls-into-Bins

The infamous stochastic dependence:
negative association,
Poisson approximation...

Stochastic dependence in repeated balls-into-bins:

How to handle time dependence?

A coupling w.h.p.: the tetris process

Mt(RBB) := time ¢ max. load in repeated b.i.b.

Mt(T) := time ¢ max. load in tetris proc.

Pr(MPE) > k) < Pr(M{") > k) 4t =0
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Analysis of b.i.b.

Lemma (empty bins).
At the next round [{empty bins}\zg w.h.p.

Corollary

3
At the next round [{thrown balls}]ﬁZn w.h.p.

Proof
a := |{empty bins}|, b := [{bins with 1 ball}|,
X := |{new empty bins}

L E[X] = (a+b)(1 - 1/n)""
2.n—(a+b) <a = E[X]|>(1+¢7%

3. Chernoff bound (negative association)
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Tetris Process

1- Throw away a ball from each non-empty bin
2- Throw 3n/4 balls in the bins u.a.r.

Coupling

Step 1: As rep. b.i.b., take one ball from each bin
Step 2: Let k := non-empty bins in rep. b.i.b.

If £ > 3n/4 then tetrislLrep. b.i.b.

Else throw the first £ balls in the same bin of

rep. b.i.b., and the others u.a.r.
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Analysis of b.i.b.

Theorem
The max. load of the tetris process is O(logn) for
poly(n) rounds w.h.p.

Proof

rounds

T' := # rounds from last time the bin was empty
For each bin: load k at round ¢t = received k + 1" bal
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Analysis of b.i.b.

Theorem
The max. load of the tetris process is O(logn) for
poly(n) rounds w.h.p.

Proof

A
i E|incoming balls in t rounds| = %
s, 2, it
.

rounds

T' := # rounds from last time the bin was empty
For each bin: load k£ at round ¢ = received k + T balls

Lemma
From any configuration, every bin in the tetris
proc. is empty at least once every 5n rounds w.h.p.



Our Contribution [SPAA "15]

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.




Our Contribution [SPAA "15]

From any configuration, in O(n) rounds the
repeated balls-into-bins process reaches a conf.
with max load O(logn) w.h.p. and, from any
conf. with max load O(logn), the max load
keeps O(logn) for poly(n) rounds w.h.p.

Theorem

After at most O(n) rounds the max. load of n
GOSSTIP r.w.s on n-node complete graph is O(logn)
w.h.p., and keeps O(logn) for poly(n) rounds.
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GOSSTP R.W.s on non-Complete Graphs

The analysis for the complete graph can
still be applied locally provided that the
minimum degree is an for some constant
a > 0 (G. Scornavacca’s MSc thesis).

On other topologies the technique fails
because we don’t know how to locate the
empty nodes!

Open Problems:
Maximum load on regular graphs?
Maximum load on the ring?
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Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees,
for some v < 1

From any initial conf., in finite number of rounds,
w.h.p. the system reaches a family of conf.s where
n — O(n”) nodes hold the same opinion (almost
agreement), which was held in the initial conf.
(almost validity), and the convergence hold w.h.p.

for any polynomial number of rounds (almost
stability).



Stabilizing Almost-Consensus

A stabilizing almost-consensus protocol guarantees,
for some v < 1

From any initial conf., in finite number of rounds,
w.h.p. the system reaches a family of conf.s where
n — O(n”) nodes hold the same opinion (almost
agreement), which was held in the initial conf.
(almost validity), and the convergence hold w.h.p.

for any polynomial number of rounds (almost
stability).

No termination!
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Failed Attempts: 3-Median

Theorem (Doerr et al. SPAA ’11). For any
v/n-bounded adversary,in O(logm - loglogn + logn) time
the 3-median rule computes w.h.p. an almost stable
value between the (n/2 — cy/nlogn)-largest and the

(n/2 + cy/nlogn)- largest of the initial values.

No almost validity

D@

Changed by adversary




Part 2-a: 3-Majority (take II)

1. Majority Consensus

(a) 3-Majority (take I)

(b) Undecided-State
2. Congestion of GOSSTP random walks
3. Stabilizing Consensus

(a) 3-Majority (take II)
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3-Majority without Bias [SODA ’16

What if we start from any initial configuration, i.e.
there may be no initial bias?

Theorem. Let £ < n®, for a suitable constant

a < 1, and F = 8y/n/(k? logn) for some constant
B > 0. The 3-majority dynamics is a stabilizing
almost-consensus protocol in the presence of any
F-dynamic adversary and its convergence time is

O((k*y/logn + klogn)(k +logn)), w.h.p.



What’s the Problem without Bias?

Lemma 2. Let 1 be the plurality opinion, then

,ul—,uj>s(c)(1—l—%(1—c—1)).

n




“Unbiased” Analysis

Symmetry Breaking
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“Unbiased” Analysis

Symmetry Breaking
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Lemma. {X;}:+ a Markov chain with finite state space (2,
f:Q — N, {Y;}+ the stochastic process Y; = f(X:), m € N a
“target value” and 7 = inf{t € N : Y; > m} the r.v. of the

first time Y; surpasses m. Assume that, Vo € () with
f(x) <m —1, it holds

1. (Positive drift). E|[Yiy1 | X: = x| > f(z)+ A for some A > 0
2. (Bounded jumps). PrY; > am < am/n, for some a > 1.
Then, Vx € €, it holds E|7]| < 2a%*.
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Lemma. Let ¢ be any configuration with 5 supported
opinions. Within ¢t = O (] log 1/2 ) rounds it holds
that

Pr(3di such that Cz-(t) <n/j— \/jnlog n) >

1
2



“Unbiased” Analysis

Lemma. Let ¢ be the conf. at round t with j supported
opinions. For any opinion ¢ it holds,

E[C"T | Cc® =¢] < ¢ (1 + = - 1.) .
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Lemma. Let ¢ be the conf. at round t with j supported
opinions. For any opinion ¢ it holds,
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“Unbiased” Analysis

Lemma. Let ¢ be any conf. with 7 < nt/3-¢ supported

opinions (Ve > 0 const), and such that an opinion ¢ exists
with ¢; < n/j —+/jnlogn. Within t = O(j logn) rounds
opinion ¢ becomes O (j2 log n) w.h.p.

ci <n/j—+/jnlogn M’ c; = O(5%logn)
w.h.p.



“Unbiased” Analysis

Lemma. Let ¢ be any conf. with 7 < nt/3-¢ supported

opinions (Ve > 0 const), and such that an opinion ¢ exists
with ¢; < n/j —+/jnlogn. Within t = O(j logn) rounds
opinion ¢ becomes O (j2 log n) w.h.p.

ci <n/j—+/jnlogn M’ c; = O(5%logn)
w.h.p.

Lemma. Let ¢ be any conf. with j < n'/3~¢ supported

opinions (Ve > 0 const), and such that an opinion ¢ exists
with ¢; < n/(25). Within t = O(jlogn) rounds opinion 1
disappears with probability at least 1/2.

t =0O(jlogn)

¢ <n/(2)) oo~ o C;i =0
Z /(27) with prob. > 1/2 Z
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Stabilizing Consensus on not-Complete Graphs

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?

Theorem (Cooper et al. ICALP ’14).

Let G be a random d-regular graph with initial opinions
A and B. There is an absolute constant K (independent
of d) such that, provided

A-B| | K\/g+a’

mn n

two-sample voting is completed in O(logn) steps a.a.s.,
and the winner is the opinion with the initial majority.



Stabilizing Consensus on not-Complete Graphs

Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?’

Theorem (Cooper et al. ICALP ’14).

Let G be a d-regular graph with initial opinions A and
B,1=X1 > X2 >---A, > —1 be the eigenvalalues of
the transition matrix of the r.w. on GG, and

A = Ag = max{|Az|, |\n|}. For some const. K (indep. of
d and \g), provided

A — Bl/n > Klg,

a.a.s. two-sample voting is completed in O(logn) steps
and winner is the initial majority.
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Open Problems
Stabilizing consensus on random graphs?
Stabilizing consensus on expander graphs?

Expander Mixing Lemma (Alon, Chung).
Let G = (V, FE) be a d-regular n-vertex graph. Let
1 =X > X2>---), > —1 be the eigenvalues of the

transition matrix of the random walk on &, and let
A = Ag = max{|Az|, |An|}. Then for all S,T CV,

B, 1) — YL < AavsT.

n



Thank you!

o
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