Plurality Consensus in the Gossip Model

Emanuele Natale

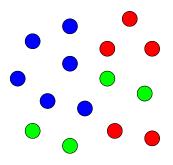
joint work with L. Becchetti[†], A. Clementi^{*}, F. Pasquale^{*} and R. Silvestri[†]

[†]Sapienza Università di Roma, *Università di Rome Tor Vergata

ARS TechnoMedia - PRIN Project Bertinoro Meeting 4th-6th February 2015

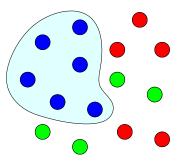
The Plurality Consensus Problem

 We have a set of nodes each having one color out of {1,..., k}.



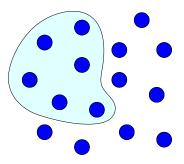
The Plurality Consensus Problem

- We have a set of nodes each having one color out of {1,...,k}.
- There is a plurality of nodes having the same color.



The Plurality Consensus Problem

- We have a set of nodes each having one color out of {1,...,k}.
- There is a plurality of nodes having the same color.
- We want to reach consensus on the plurality color.



 Computer science: distributed databases and sensor networks (Bénézit et al. '09).

- Computer science: distributed databases and sensor networks (Bénézit et al. '09).
- Social networks: opinion dynamics (Mossel et al. '14).

- Computer science: distributed databases and sensor networks (Bénézit et al. '09).
- Social networks: opinion dynamics (Mossel et al. '14).
- Biology: cell cycle (Cardelli et al. '12).

- Computer science: distributed databases and sensor networks (Bénézit et al. '09).
- Social networks: opinion dynamics (Mossel et al. '14).
- **Biology**: cell cycle (Cardelli et al. '12).
- **Chemestry**: chemical reaction networks/population protocols (Angluin et al. '07).

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor.

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor. \rightarrow Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor. \rightarrow Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

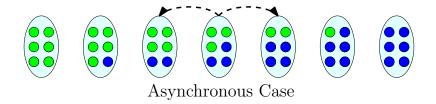
Probabilistic Polling (Peleg '99). Time divided in discrete rounds. All nodes *simultaneously* take the opinion of a random neighbor.

Voter Model ('70). Each node with a Poisson clock. When rings, takes the opinion of a random neighbor. \rightarrow Continuos time (sequential/asynchronous) process. Well studied in statistical physics (constant number of particle types).

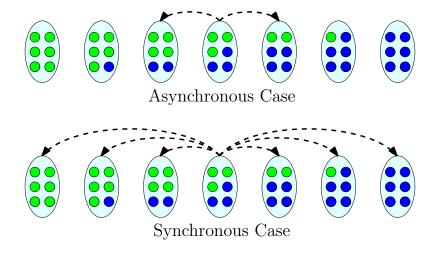
Probabilistic Polling (Peleg '99). Time divided in discrete rounds. All nodes *simultaneously* take the opinion of a random neighbor.

 \rightarrow Discrete time (parallel/synchronous) process. Initiated the study of Plurality Consensus in Computer Science.

Asynchronous vs Synchronous



Asynchronous vs Synchronous



• Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.

- Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.
- **Topology**: complete graph (and regular expanders).

- Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.
- **Topology**: complete graph (and regular expanders).
- **Communication model**: *GOSSIP* model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.

- Initial bias: the plurality is at least $(1 + \epsilon)$ times any other color.
- **Topology**: complete graph (and regular expanders).
- Communication model: GOSSIP model [Censor-Hillel et al., STOC '12]. Each node in one round can exchange messages with only one neighbor.
- Local memory and message size: $O(\log n)$.

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

GOSSIP model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

 \ldots on the complete graph, plurality consensus can be achieved in one round.

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the \mathcal{LOCAL} model in T rounds, can be solved in O(T + polylogn) rounds in the \mathcal{GOSSIP} model. **But**...

 \mathcal{GOSSIP} model with neighbors chosen randomly: Telephone Call, Push&Pull, Uniform Gossip...

 \mathcal{LOCAL} model [Peleg, SIAM '00]: each node in one round can exchange messages with all its neighbors.

... on the complete graph, plurality consensus can be achieved in one round.

Censor-Hillel et al. (STOC '12):

Every task that can be solved in the \mathcal{LOCAL} model in T rounds, can be solved in O(T + polylogn) rounds in the \mathcal{GOSSIP} model.

 $\ensuremath{\textbf{But}}\xspace\ldots$ using the preceding theorem, message size grows dramatically!

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(k \log n)$	any	$O(\log n)$	GOSSIP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	GOSSIP

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\log n)$	GO <mark>S</mark> SIP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	$\Theta(1)$	2	$O(\log n)$	Sequential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	GOSSIP

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\log n)$	GOS <mark>S</mark> IP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	0(1)	\times	$O(\log n)$	Segmential
Doerr _{et al.} SPAA '11	$\Theta(1)$	2	$O(\log n)$	GOSSIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	GOSSIP

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\log n)$	GO <mark>S</mark> SIP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	0(1)	\times	$O(\log n)$	Segmential
Doerr _{et al.} SPAA '11	$\Theta(1)$	\times	$O(\log n)$	GO <mark>S</mark> 8IP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Constant	$O(\log n)$	Sequential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	GOSSIP

	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\log n)$	GO <mark>S</mark> SIP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	Θ(1)	\times	$O(\log n)$	Segmential
Doerr _{et al.} SPAA '11	$\Theta(1)$	×	$O(\log n)$	GO <mark>S</mark> 8IP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Coperant	$O(\log n)$	Segmential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \cdot \log n)$	GOSSIP

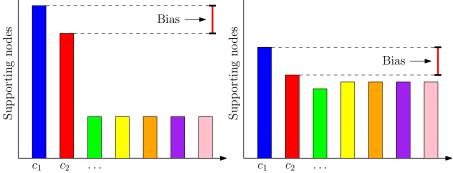
	Mem. & mess. size	# of colors	Time efficiency	Comm. Model
Kempe et al. FOCS '03	$O(\log n)$	any	$O(\log n)$	GOS <mark>S</mark> IP
Angluin et al. DISC '07 Perron et al. INFOCOM'09	0(1)	\times	$O(\log n)$	Segmential
Doerr _{et al.} SPAA '11	$\Theta(1)$	×	$O(\log n)$	GO <mark>S</mark> SIP
Babaee et al. Comp. J. '12 Jung et al. ISIT '12	$O(\log k)$	Coperant	$O(\log n)$	Segmential
Us+Trevisan SPAA '14	$O(\log k)$	$n^{\Theta(1)}$	$O(k \log n)$	GO <mark>S</mark> SIP

Our Contribution: Characterizing the Initial Bias

 $c_i^{(t)} := |\{i \text{-colored nodes}\}|, \text{ color 1 is the plurality}$

Our Contribution: Characterizing the Initial Bias

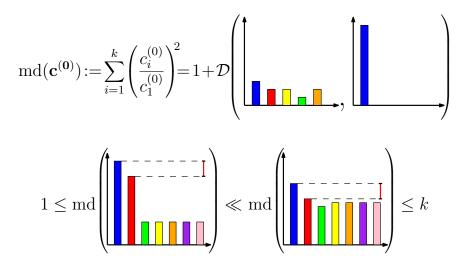
 $c_i^{(t)} := |\{i \text{-colored nodes}\}|, \text{ color 1 is the plurality}$



The Monochromatic Distance

$$\mathrm{md}(\mathbf{c}^{(\mathbf{0})}) := \sum_{i=1}^{k} \left(\frac{c_{i}^{(0)}}{c_{1}^{(0)}} \right)^{2} = 1 + \mathcal{D}\left(\left(\begin{array}{c} \mathbf{1} \\ \mathbf{1$$

The Monochromatic Distance



Our Results

First analysis for $k = \omega(1)$ of the Undecided-State Dynamics [Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

If $k = O((n/\log n)^{1/3})$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O(\operatorname{md}(\mathbf{c}^{(0)}) \cdot \log n)$ rounds.

Our Results

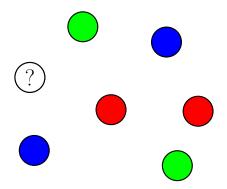
First analysis for $k = \omega(1)$ of the Undecided-State Dynamics [Angluin et al., Perron et al., Babaee et al., Jung et al.]:

Upper Bound

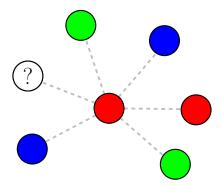
If $k = O\left((n/\log n)^{1/3}\right)$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, then w.h.p. the Undecided-State Dynamics reaches plurality consensus in $O\left(\operatorname{md}(\mathbf{c}^{(0)}) \cdot \log n\right)$ rounds.

Lower Bound If $k = O((n/\log n)^{1/6})$ then w.h.p. the Undecided-State Dynamics converges after at least $\Omega(md(\mathbf{c}^{(0)}))$ rounds.

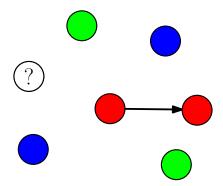
The Undecided-State Dynamics



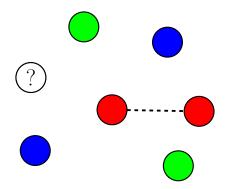
Some nodes can be "undecided".



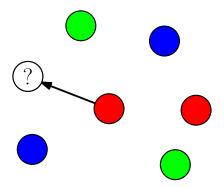
At the beginning of each round, each node observes a neighbor picked uniformly at random.



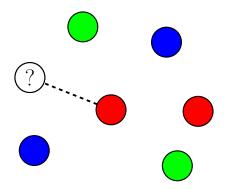
If the observed node shares the same color...



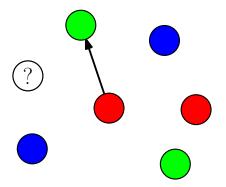
... nothing happens;



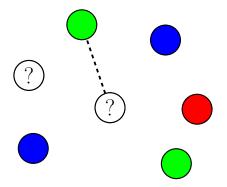
if the node observes an undecided one...



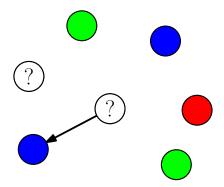
... nothing happens too;



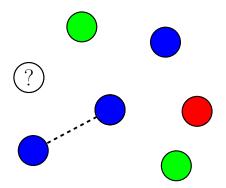
but, if the observed node has a different color...



... then the node becomes undecided.



Once undecided...



... the node copies the first color it sees.

$$c_i^{(t)} := |\{i \text{-colored nodes}\}|, \text{ color 1 is the plurality},$$

$$c_i^{(t)} := |\{i \text{-colored nodes}\}|, \text{ color 1 is the plurality},$$

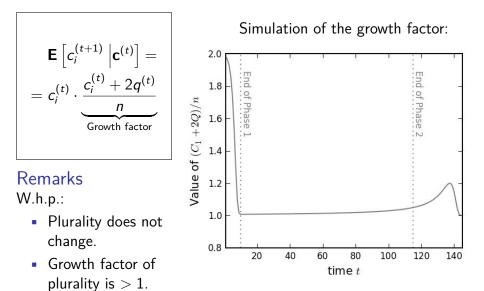
 $q^{(t)} := |\{\text{undecided nodes}\}|, \mathbf{c}^{(t)} := \left(c_1^{(t)}, \dots, c_k^{(t)}, q^{(t)}\right)$

$$c_i^{(t)} := |\{i \text{-colored nodes}\}|, \text{ color 1 is the plurality},$$

 $q^{(t)} := |\{\text{undecided nodes}\}|, \mathbf{c}^{(t)} := \left(c_1^{(t)}, \dots, c_k^{(t)}, q^{(t)}\right)$

$$\mathsf{E}\left[c_{i}^{(t+1)} \middle| \mathsf{c}^{(t)}\right] = c_{i}^{(t)} \cdot \underbrace{\frac{c_{i}^{(t)} + 2q^{(t)}}{n}}_{\text{Growth factor}}$$

Overview of the Process



Expected Behaviour of the Process

$$\begin{cases} \mathsf{E}\left[q^{(t+1)} \mid \mathbf{c}^{(t)}\right] = \frac{1}{n} \left[\left(q^{(t)}\right)^{2} + \left(n - q^{(t)}\right)^{2} - \sum_{i} \left(c_{i}^{(t)}\right)^{2}\right] \\ \mathsf{E}\left[c_{1}^{(t+1)} \mid \mathbf{c}^{(t)}\right] = c_{1}^{(t)} \cdot \frac{c_{1}^{(t)} + 2q^{(t)}}{n} \\ \vdots \\ \mathsf{E}\left[c_{k}^{(t+1)} \mid \mathbf{c}^{(t)}\right] = c_{k}^{(t)} \cdot \frac{c_{k}^{(t)} + 2q^{(t)}}{n} \end{cases}$$

Expected Behaviour of the Process

$$\begin{cases} \mathbf{E} \left[q^{(t+1)} \left| \mathbf{c}^{(t)} \right] = \frac{1}{n} \left[\left(q^{(t)} \right)^2 + \left(n - q^{(t)} \right)^2 - \sum_i \left(c_i^{(t)} \right)^2 \right] \\ \mathbf{E} \left[c_1^{(t+1)} \left| \mathbf{c}^{(t)} \right] = c_1^{(t)} \cdot \frac{c_1^{(t)} + 2q^{(t)}}{n} \\ \vdots \\ \mathbf{E} \left[c_k^{(t+1)} \left| \mathbf{c}^{(t)} \right] = c_k^{(t)} \cdot \frac{c_k^{(t)} + 2q^{(t)}}{n} \end{cases}$$

Our Key Idea

Tip: Look for
$$md(\mathbf{c}^{(t)})$$
 and $R(\mathbf{c}^{(t)}) := \sum_{i=1}^k \frac{c_i^{(t)}}{c_1^{(t)}}$.

Our Key Idea

Tip: Look for
$$md(\mathbf{c}^{(t)})$$
 and $R(\mathbf{c}^{(t)}) := \sum_{i=1}^k \frac{c_i^{(t)}}{c_1^{(t)}}$.

Lemma

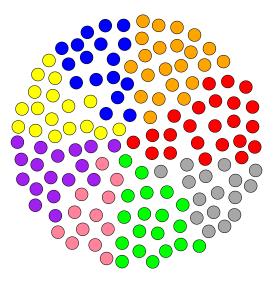
$$\mathbf{E}\left[\frac{c_1^{(t+1)} + 2q^{(t+1)}}{n} \left| \mathbf{c}^{(t)} \right] = \\ = 1 + \frac{\left(n - 2q^{(t)} - c_1^{(t)}\right)^2}{n^2} + \frac{2\left(R(\mathbf{c}^{(t)}) - \mathrm{md}(\mathbf{c}^{(t)})\right) \cdot (c_1)^2}{n^2}$$

Round 1: Each node observes another random one.

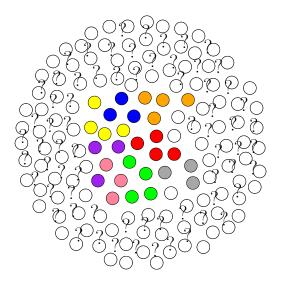


Round 1: Each node observes another random one.

The larger the number of colors and the more uniform the initial distribution, the higher the expected number of undecided nodes.

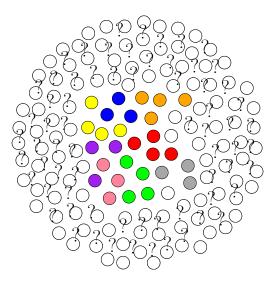


The size of each color is reduced to $\frac{(c_i^{(0)})^2}{n}$.



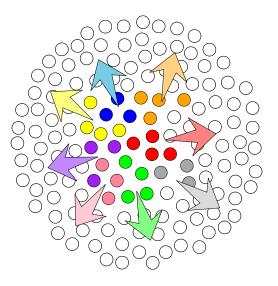
The size of each color is reduced to $\frac{(c_i^{(0)})^2}{n}$.

Colors with $c_i^{(0)} = O(\sqrt{n})$ nodes are likely to disappear.



If the initial distribution is quite uniform there are $\Omega(n)$ undecided nodes.

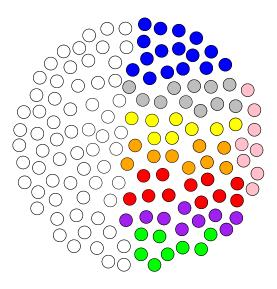
Undecided nodes take the first color they pull, causing colors to spread very fast.

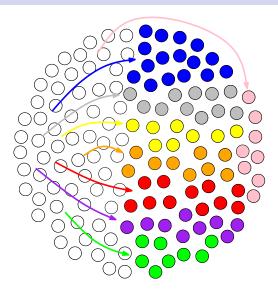


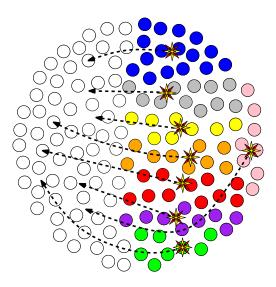
Lemma Within $T = O\left(\log \frac{R(c)^2}{md(c)}\right)$ rounds the system reaches a configuration such that w.h.p.

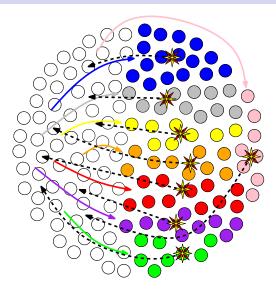
$$\begin{aligned} c_1^{(T)} &= \Theta\left(\frac{n}{\mathsf{md}(\mathbf{c})}\right) \\ q^{(T)} &= \frac{n}{2}\left(1 \pm \Theta\left(\frac{1}{\mathsf{md}(\mathbf{c})}\right)\right) \end{aligned}$$

and, for every i, $c_1^{(0)}/c_i^{(0)}$ is approximately preserved.









Average Growth:

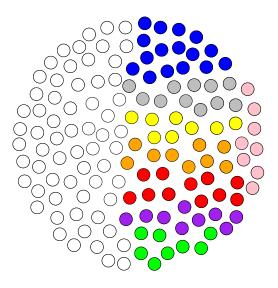
$$\mathbf{E} \left[c_1^{(t+1)} \left| \mathbf{c}^{(t)} \right] \approx c_1^{(t)} \left(1 + \Theta \left(\frac{1}{\mathsf{md}(\mathbf{c})} \right) \right)$$
$$\mathbf{E} \left[q^{(t+1)} \left| \mathbf{c}^{(t)} \right] \approx \frac{n}{2} \left(1 - \Theta \left(\frac{1}{\mathsf{md}(\mathbf{c})} \right) \right)$$

Average Growth:

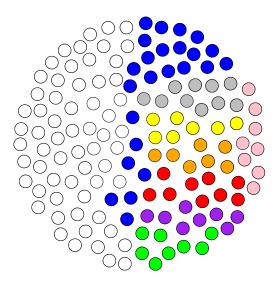
$$\begin{split} \mathbf{E} \left[c_1^{(t+1)} \left| \mathbf{c}^{(t)} \right] &\approx c_1^{(t)} \left(1 + \Theta \left(\frac{1}{\mathsf{md}(\mathbf{c})} \right) \right) \\ \mathbf{E} \left[q^{(t+1)} \left| \mathbf{c}^{(t)} \right] &\approx \frac{n}{2} \left(1 - \Theta \left(\frac{1}{\mathsf{md}(\mathbf{c})} \right) \right) \end{split}$$

 \implies Lower bound of Ω (md(c)).

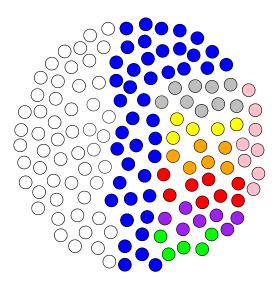
The plurality has a small advantage \implies after long time the equilibrium breaks down.



The plurality has a small advantage \implies after long time the equilibrium breaks down.



The plurality has a small advantage \implies after long time the equilibrium breaks down.



Average Growth:

$$\begin{split} \mathbf{E} \left[c_1^{(t+\operatorname{\mathsf{md}}(\mathbf{c}))} \left| \mathbf{c}^{(t)} \right] &\approx c_1^{(t)} \left(1 + \Theta \left(\frac{1}{\operatorname{\mathsf{md}}(\mathbf{c})} \right) \right)^{\operatorname{\mathsf{md}}(\mathbf{c})} \\ \mathbf{E} \left[q^{(t+\operatorname{\mathsf{md}}(\mathbf{c}))} \left| \mathbf{c}^{(t)} \right] &\approx \frac{n}{2} \left(1 - \Theta \left(\frac{1}{\operatorname{\mathsf{md}}(\mathbf{c})} \right) \right)^{\operatorname{\mathsf{md}}(\mathbf{c})} \end{split}$$

Average Growth:

$$\begin{split} \mathbf{E} \left[c_1^{(t+\operatorname{\mathsf{md}}(\mathbf{c}))} \left| \mathbf{c}^{(t)} \right] &\approx c_1^{(t)} \left(1 + \Theta \left(\frac{1}{\operatorname{\mathsf{md}}(\mathbf{c})} \right) \right)^{\operatorname{\mathsf{md}}(\mathbf{c})} \\ \mathbf{E} \left[q^{(t+\operatorname{\mathsf{md}}(\mathbf{c}))} \left| \mathbf{c}^{(t)} \right] &\approx \frac{n}{2} \left(1 - \Theta \left(\frac{1}{\operatorname{\mathsf{md}}(\mathbf{c})} \right) \right)^{\operatorname{\mathsf{md}}(\mathbf{c})} \end{split}$$

 \implies After $O(md(\mathbf{c}) \log n)$ rounds, $R(\mathbf{c}^{(t)}) = 1 + o(1)$.

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})}$$

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$\implies \mathbf{E}\left[\frac{c_1^{(t+1)}+2q^{(t+1)}}{n} \left| \mathbf{c}^{(t)} \right| \ge 1 + \left(\frac{q^{(t)}}{n}\right)^2$$

$$R(\mathbf{c}^{(t)}) = 1 + o(1) \implies c_1^{(t)} = \frac{n - q^{(t)}}{R(\mathbf{c}^{(t)})} \approx n - q^{(t)}$$

$$\implies \mathbf{\mathsf{E}}\left[\frac{c_1^{(t+1)}+2q^{(t+1)}}{n}\,\middle|\,\mathbf{c}^{(t)}\right] \ge 1+\left(\frac{q^{(t)}}{n}\right)^2$$

 \implies Plurality Consensus is reached within $O(\log n)$ rounds.

Extension to *d*-Regular Expanders

Given a *d*-regular expander graph, $k = O\left((n/\log n)^{1/3}\right)$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(md(\mathbf{c})polylog(n))$ rounds.

Given a *d*-regular expander graph, $k = O\left((n/\log n)^{1/3}\right)$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(md(\mathbf{c})polylog(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via *n* parallel random walks.

Given a *d*-regular expander graph, $k = O\left((n/\log n)^{1/3}\right)$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(md(\mathbf{c})polylog(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via *n* parallel random walks. (Rapidly mixing property)

Given a *d*-regular expander graph, $k = O\left((n/\log n)^{1/3}\right)$ and $c_1 \ge (1 + \epsilon) \cdot c_2$ with $\epsilon > 0$, using polylogarithmic memory and message size the plurality consensus problem can be solved in w.h.p. $O(md(\mathbf{c})polylog(n))$ rounds.

Idea. Simulate Undecided-State Dynamics on complete graph by sampling via *n* parallel random walks. (Rapidly mixing property)

Issue. The \mathcal{GOSSIP} model with O(polylogn) limit on message size: congestion when random walks meet.

 md(c): global measure of bias, key of the Undecided-State Dynamic.

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.
- Extension to regular expanders: random walks in the *GOSSIP* model.

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.
- Extension to regular expanders: random walks in the GOSSIP model.

Open Problems

md(c) [?] general time lower bound on the plurality consensus problem for *any* dynamics which uses only log k + Θ(1) bits of local memory?

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.
- Extension to regular expanders: random walks in the GOSSIP model.

Open Problems

- md(c) [?] general time lower bound on the plurality consensus problem for *any* dynamics which uses only log k + Θ(1) bits of local memory?
- Undecided-State Dynamics + sampling via random walks
 = efficient protocol for regular expander graphs.

- md(c): global measure of bias, key of the Undecided-State Dynamic.
 - \implies Plurality consensus problem with **many** colors.
- Extension to regular expanders: random walks in the GOSSIP model.

Open Problems

- md(c) [?] general time lower bound on the plurality consensus problem for *any* dynamics which uses only log k + Θ(1) bits of local memory?
- Undecided-State Dynamics + sampling via random walks
 = efficient protocol for regular expander graphs. Similar protocols for other classes of graphs...?