Noisy Rumor Spreading and Plurality Consensus
Emanuele Natale ${ }^{\dagger}$
joint work with
Pierre Fraigniaud*

3rd Workshop on
Biological Distributed Algorithms
August 18-19, 2015
Boston, MA USA at MIT

Rumor-Spreading Problem

Rumor-Spreading Problem

Plurality Consensus Problem

Plurality Consensus Problem

Some examples (Plurality Consensus)

Flocks of birds [Ben-Shahar et al. '10]

$$
1 f^{4^{\pi}}+1 \leq \frac{1}{4}
$$

Some examples (Plurality Consensus)

Flocks of birds [Ben-Shahar et al. '10]

$$
1 f^{+\pi}+1 \leqslant 44
$$

Schools of fish [Sumpter et al. '08]

Some examples (Plurality Consensus)

Flocks of birds [Ben-Shahar et al. '10]

$$
1 f^{x^{+\pi}}+1 * 4
$$

Schools of fish [Sumpter et al. '08]

Insects colonies [Franks et al. '02]

두웅

Some examples (Plurality Consensus)

Flocks of birds [Ben-Shahar et al. '10]

$$
1 f^{c^{+\pi}}+1 \leqslant 44
$$

Schools of fish [Sumpter et al. '08]

Insects colonies [Franks et al. '02]

Eukaryotic cells [Cardelli et al. '12]

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...
O. Feinerman, B. Haeupler and A. Korman.

Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication. (PODC '14)
\Longrightarrow Natural rules efficiently solve rumor spreading and plurality consensus despite noise.

Animal Communication Despite Noise

Noise affects animal communication, but animals cannot use coding theory...
O. Feinerman, B. Haeupler and A. Korman.

Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication. (PODC '14)
\Longrightarrow Natural rules efficiently solve rumor spreading and plurality consensus despite noise.

They only consider the binary-opinion case.
Our contribution: generalize to many opinions.

Binary Case - Model

n agents. One agent has one bit to spread.

Binary Case - Model

Communication model: push gossip model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

Binary Case - Model

Communication model: push gossip model [Pittel '87]: at each round each agent can send a bit to another one chosen uniformly at random.

Binary Case - Model

Noise: before being received, each bit is flipped with probability $1 / 2-\epsilon\left(\epsilon=n^{- \text {const }}\right)$.

Binary Case - Model

Noise: before being received, each bit is flipped with probability $1 / 2-\epsilon\left(\epsilon=n^{- \text {const }}\right)$.

Binary Case - Model

Noise: before being received, each bit is flipped with probability $1 / 2-\epsilon\left(\epsilon=n^{- \text {const }}\right)$.

Binary Case - Model

Noise: before being received, each bit is flipped with probability $1 / 2-\epsilon\left(\epsilon=n^{- \text {const }}\right)$.

Breathe Before Speaking

$$
\begin{aligned}
& \text { * } \\
& \text {) 4* * } \\
& \text { 4 } \\
& \begin{array}{c}
\text { trivial } \\
\text { strategy }
\end{array} \\
& \text { blue vs red: } \\
& 1 / 0
\end{aligned}
$$

Breathe Before Speaking

trivial
strategy
blue vs red:
2/0

Breathe Before Speaking

$$
\begin{aligned}
& \text { * * * * * * * * * * } \\
& \text { * } x^{2} \cos ^{2} \\
& \text { 荲 }
\end{aligned}
$$

$\begin{gathered}\text { trivial } \\ \text { strategy }\end{gathered}$
blue vs red:
$3 / 1$

Breathe Before Speaking

$$
\begin{aligned}
& \text { * } \\
& \text { * } x^{2} x^{2} \\
& \text { 4. } \\
& \text { trivial } \\
& \text { strategy } \\
& \text { blue vs red: } \\
& 9 / 6=1.5
\end{aligned}
$$

Breathe Before Speaking

$$
\begin{aligned}
& \text { * } x^{2} x^{2}
\end{aligned}
$$

trivial
strategy
blue vs red:
$18 / 13 \approx 1.4$

Breathe Before Speaking

$$
\begin{aligned}
& \text { v }
\end{aligned}
$$

trivial
strategy
blue vs red:
$35 / 29 \approx 1.2$

Breathe Before Speaking

blue vs red: $35 / 29 \approx 1.2$

Breathe Before Speaking

Stage 1: Spreading

blue vs red: $1 / 0$

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading
 blue vs red:
 $1 / 0$

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red: $1 / 0$

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red:

$1 / 0$
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red:

$3 / 1$
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red:

$3 / 1$
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red:

8/4
"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

Stage 1: Spreading

blue vs red: $40 / 24 \approx 1.7$

"[...] ants effectively self-restrict their own tendency to engage in further interactions that would excite further nest-mates."
(Razin et al. '13)

Breathe Before Speaking

$$
\begin{aligned}
& \text { Stage 1: Spreading }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 造法 } \\
& \text { Stage 1: Spreading } \\
& \text { blue vs red: } \\
& 40 / 24 \approx 1.7
\end{aligned}
$$

Stage 2：Amplifying majority

 \＃汽 $<$ \＃跳？

Mathematical Challenges

- Stochastic Dependence

Mathematical Challenges

- Stochastic Dependence

Mathematical Challenges

- Stochastic Dependence

- Multivariate Asymptotics

The number k of states of an agent changes with the number of agents in the system.

$$
k=k(n) \underset{n \rightarrow \infty}{\longrightarrow} \infty
$$

Mathematical Challenges

- "Small Deviations"

Mathematical Challenges

- "Small Deviations"

Multivalued Case

Multivalued Case

Multivalued Case

Multivalued Case

Multivalued Case

Noise Matrix:

$$
\begin{aligned}
& \text { © } \sim P:=\left(\begin{array}{lll}
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta} \\
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta} \\
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta}
\end{array}\right) \\
& \text { Ty }
\end{aligned}
$$

Multivalued Case

Noise Matrix：

$$
\rightarrow\left(\begin{array}{lll}
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta} \\
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta} \\
p_{\Delta, \Delta} & p_{\Delta, \Delta} & p_{\Delta, \Delta}
\end{array}\right)
$$

δ－majority－biased configuration w．r．t．揮：

$$
\begin{aligned}
& \text { \# 換 } / n-\# \text { 酸 } / n>\delta \\
& \text { \#跨 } / n-\# \text { 酸 } / n>\delta
\end{aligned}
$$

Main Result

ε-majority-preserving noise matrix:

$$
\begin{aligned}
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta \\
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta
\end{aligned}
$$

Main Result

ε-majority-preserving noise matrix:

$$
\begin{aligned}
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta \\
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta
\end{aligned}
$$

Theorem. Let S be the initial set of agents with opinions in $[k]$. Suppose that the noise matrix P is ϵ-majority-preserving and S is $\Omega(\sqrt{\log n /|S|})$-majority-biased with $|S|=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$. Then the rumor spreading and plurality consensus problems can be solved in $O\left(\frac{\log n}{\epsilon^{2}}\right)$ rounds w.h.p., with $O\left(\log \log n+\log \frac{1}{\epsilon}\right)$ memory per node.

Main Result

ε-majority-preserving noise matrix:

$$
\begin{aligned}
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta \\
& (\mathbf{c} P)_{\Delta}-(\mathbf{c} P)_{\Delta}>\varepsilon \delta
\end{aligned}
$$

Theorem. Let S be the initial set of agents with opinions in $[k]$. Suppose that the noise matrix P is ϵ-majority-preserving and S is $\Omega(\sqrt{\log n /|S|})$-majority-biased with $|S|=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$. Then the rumor spreading and plurality consensus problems can be solved in $O\left(\frac{\log n}{\epsilon^{2}}\right)$ rounds w.h.p., with $O\left(\log \log n+\log \frac{1}{\epsilon}\right)$ memory per node.

$$
P=\left(\begin{array}{ll}
1 / 2+\varepsilon & 1 / 2-\varepsilon \\
1 / 2-\varepsilon & 1 / 2+\varepsilon
\end{array}\right) \Longrightarrow \text { Feinerman et al. }
$$

Probability Amplification

A dice with k faces is thrown ℓ times.

Probability Amplification

A dice with k faces is thrown ℓ times.

$\mathcal{M}:=$ most frequent face in the ℓ throws
(breaking ties at random).
For any $j \neq 1$

$$
\operatorname{Pr}(\mathcal{M}=1)-\operatorname{Pr}(\mathcal{M}=j) \geq \text { const } \cdot \sqrt{\ell} \gamma\left(1-\gamma^{2}\right)^{\frac{\ell-1}{2}}
$$

Probability Amplification

A dice with k faces is thrown ℓ times.

$\mathcal{M}:=$ most frequent face in the ℓ throws
(breaking ties at random).
For any $j \neq 1$

$$
\operatorname{Pr}(\mathcal{M}=1)-\operatorname{Pr}(\mathcal{M}=j) \geq \text { const } \cdot \sqrt{\ell} \gamma\left(1-\gamma^{2}\right)^{\frac{\ell-1}{2}}
$$

Binomial vs Beta

Given $p \in(0,1)$ and $0 \leq j \leq \ell$ it holds

$$
\begin{aligned}
\operatorname{Pr}(\operatorname{Bin}(n, p) \leq j) & =\sum_{j<i \leq \ell}\binom{\ell}{i} p^{i}(1-p)^{\ell-i} \\
& =\binom{\ell}{j+1}(j+1) \int_{0}^{p} z^{j}(1-z)^{\ell-j-1} d z \\
& =\operatorname{Pr}(\operatorname{Beta}(n-k, k+1)<1-p) .
\end{aligned}
$$

Binomial vs Beta

Given $p \in(0,1)$ and $0 \leq j \leq \ell$ it holds

$$
\begin{aligned}
\operatorname{Pr}(\operatorname{Bin}(n, p) \leq j) & =\sum_{j<i \leq \ell}\binom{\ell}{i} p^{i}(1-p)^{\ell-i} \\
& =\binom{\ell}{j+1}(j+1) \int_{0}^{p} z^{j}(1-z)^{\ell-j-1} d z \\
& =\operatorname{Pr}(\operatorname{Beta}(n-k, k+1)<1-p) .
\end{aligned}
$$

Multinomial vs Dirichlet?

